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SUMMARY

An unstructured dynamic mesh adaptation and load balancing algorithm has been developed for the
e�cient simulation of three-dimensional unsteady inviscid �ows on parallel machines. The numerical
scheme was based on a cell-centred �nite-volume method and the Roe’s �ux-di�erence splitting. Second-
order accuracy was achieved in time by using an implicit Jacobi/Gauss–Seidel iteration. The resolution of
time-dependent solutions was enhanced by adopting an h-re�nement/coarsening algorithm. Parallelization
and load balancing were concurrently achieved on the adaptive dynamic meshes for computational speed-
up and e�cient memory redistribution. A new tree data structure for boundary faces was developed for
the continuous transfer of the communication data across the parallel subdomain boundary. The parallel
e�ciency was validated by applying the present method to an unsteady shock-tube problem. The �ows
around oscillating NACA0012 wing and F-5 wing were also calculated for the numerical veri�cation
of the present dynamic mesh adaptation and load balancing algorithm. Copyright ? 2005 John Wiley
& Sons, Ltd.

KEY WORDS: unstructured mesh; dynamic mesh adaptation; parallelization; load balancing; unsteady
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1. INTRODUCTION

One of the advantages of using unstructured meshes over structured grids is in improving the
spatial accuracy of the numerical solution by applying the �exible mesh adaptation capability
to the local �ow region of interest. This advantage is very attractive also for solving transient
�ow problems, such as capturing moving shock wave, contact surface, or travelling vortex.
During the past decade, several adaptation strategies have been developed [1–12]. Among
the various adaptation algorithms, h-re�nement/coarsening is regarded as the best method for
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transient problems [2, 4]. In this method, new nodes are added inside the �ow region where
the solution error is relatively large. This operation is applied only to the local region, while
the rest of the computational domain maintains the same global mesh topology. Therefore,
this adaptation procedure can be performed more e�ectively than the mesh movement [11] or
the local re-meshing procedure [12].
For unsteady �ows, the �ow solver and the unstructured dynamic mesh adaptation proce-

dure should be coupled together for the e�cient capturing of the continuously varying �ow
physics. However, this requires very large computational resources, particularly for solving
three-dimensional �ow problems, which cannot be handled properly even on current large-scale
vector machines. Recently, owing to the rapid development of computer hardware technolo-
gies, cost-e�ective parallel machines are easily constructed and can be used to replace the
traditional vector machines. At the same time, several studies for implementing dynamic mesh
adaptation algorithms under parallel computing environment have been conducted based on
various division patterns and data structures [13–16].
A re�nement method based on non-prede�ned subdivision patterns [13] has been previously

proposed. In this method, cell division types at the communication boundary are determined
�rst, and then the subdivision of internal cells is made as compatible to the division types
of the communication boundary. This method e�ectively eliminates the cell over-re�nement
problem, and since iterative communication is not necessary to match the interface boundary,
the computational overhead for excessive communication can be signi�cantly reduced. How-
ever, this method is susceptible to frequently generating highly skewed cells during the cell
re�nement and coarsening process. To remedy this problem, cell optimization techniques, such
as edge removal, face swapping, and edge swapping, are often adopted after the re�nement
and coarsening. An optimized edge-collapsing is also used to preserve the mesh quality dur-
ing cell coarsening. The method was applied to a steady �ow around rotor blades and to the
unsteady �ow within a muzzle brake.
A parallel adaptation and load balancing algorithm based on prede�ned subdivision patterns

was developed using C++ and an edge data structure [14, 15]. The developed algorithm was
applied to simulating steady �ows around helicopter rotor blades in hover over a range of
subsonic and transonic tip Mach numbers, and the parallel performance of the dynamic mesh
adaptation was measured. A completely parallel algorithm for dynamic auto-adaptive grids
[16] was also proposed, which performs the data management, domain decomposition, and
data redistribution directly on the network. The parallel performance between the master–
slave concept and the slave–slave concept was analysed by applying the method to steady
and unsteady �ow calculations.
Even though the parallel adaptation algorithms based on prede�ned subdivision patterns

[14–16] were quite successful, practical applications were limited to three-dimensional steady
�ows and slowly evolving two-dimensional unsteady �ows, which do not require frequent
data communication. To transfer the information about re�ned edges on the local subdomain
boundary, these algorithms adopted the edge-to-edge communication, which works well for
node-based methods. However, using this edge-to-edge communication, the search process
for �nding the matching edges between adjacent processors requires repeated re-numbering/
re-ordering of the boundary edges at every application of the mesh re�nement and coarsening.
Since the number of new edges generated on the boundary faces increases very quickly,
this algorithm is very time-consuming, particularly in the case of rapidly evolving three-
dimensional unsteady �ows accompanying frequent mesh adaptation.
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Since non-hierarchical data structures do not retain the mesh enrichment history [13–16],
the mesh quality becomes severely degraded as the level of mesh adaptation and coarsening
increases. This di�culty can be relieved by adopting additional mesh optimization procedures,
at the expense of the increasing computational overhead. On the contrary, hierarchical data
structures [7, 8, 10] require extra memory for retaining the history of mesh enrichment and
coarsening. However, re�ned subcells maintain the mesh quality similar to their parent cells.
Also, mesh coarsening can be e�ciently performed by using the stored background mesh data.
In the present study, an unstructured dynamic mesh adaptation and parallel computing algo-

rithm has been developed for the simulation of three-dimensional unsteady inviscid �ows. For
this purpose, a new hierarchical face data structure was developed, which enables multi-level
mesh adaptation and e�cient boundary communication by readily providing the inter-domain
information. The information about cells, faces, and nodes can also be extracted easily by
using the present face data structure. Predetermined 1:2, 1:4, and 1:8 division types for tetra-
hedral cells and temporary bu�er cells [1, 4] were adopted for mesh re�nement=coarsening
and mesh quality preservation. Dynamic load balancing was achieved by merging and repar-
titioning the re�ned mesh after every application of the adaptation procedure. The parallel
mesh adaptation algorithm was demonstrated for a steady �ow around an ONERA M6 wing.
The unsteady parallel dynamic mesh adaptation and load balancing algorithm was validated
for a shock-tube problem, oscillating NACA0012 wing, and F-5 wing.

2. NUMERICAL METHOD

2.1. Flow solver

A three-dimensional unsteady Euler �ow solver was developed based on a cell-based �nite-
volume method. The inviscid �ux across each cell face was computed by using the Roe’s �ux-
di�erence splitting [17]. To obtain high-order spatial accuracy, estimation of the state variables
at each cell face was achieved by interpolating the solution with a Taylor series expansion
in the neighbourhood of each cell centre. The cell-averaged solution gradient required at the
cell centre for the above expansion is computed using the Gauss’ theorem by evaluating the
surface integral for the closed surface of each tetrahedron. This process can be simpli�ed by
using some geometrical invariant features of the tetrahedra [18]. The expansion also requires
the nodal value of the solution, which can be computed from the surrounding cell centre data
using a second-order accurate pseudo-Laplacian averaging procedure [19].
The discretized governing equations are integrated in time by using the second-order ac-

curate Euler backward-di�erencing coupled with an implicit Jacobi/Gauss–Seidel relaxation
method and dual time stepping [20].

2.2. Parallel implementation of the �ow solver

The global computational domain is partitioned into several local subdomains by using the
MeTiS library [21], and the subdomain mesh data is allocated to each processor. The �ow
calculation is made in each computational subdomain by exchanging the solution information
across the subdomain boundary. For the present cell-centred scheme, ghost cells are attached
to the arti�cial boundary between adjacent subdomains for the convenience of data commu-
nication. Initially, face-centre values of the �ow variables are exchanged across the boundary
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(a)

(b)

Figure 1. Enrichment procedure of transient cells: (a) Marked type-2
element; and (b) marked type-4 element.

for the evaluation of the �ux Jacobian at the subdomain boundary. Next, cell-centre values
are exchanged to perform Gauss–Seidel iterations. Boundary node values and the weighting
factors for Laplacian averaging are also communicated for the high-order reconstruction. In
the present study, cell data are exchanged at every sub-iteration, and face and node data are
transferred for every outer iteration.

2.3. Mesh re�nement algorithm

A solution-adaptive dynamic mesh algorithm was developed for the e�cient capturing of time-
varying high-gradient �ow characteristics. Tagged cells for subdivision under given criteria
are divided into eight subcells. To preserve the mesh quality, a transient cell algorithm [1, 4]
is applied to cells having either 1:2 or 1:4 division types surrounding the regular 1:8 division
cells. These temporary cells are removed and replaced by eight subdivision cells, and then an
additional 1:2 or 1:4 division is applied to the subcells containing the edge marked for division.
This ensures that the aspect ratio of the divided subcells is not excessively high compared
to their parent cell. Figure 1 shows typical cases of the transient cell re�nement. Initially,
transient cell edges to be divided are identi�ed and marked such that the cell connectivity
to surrounding cells is satis�ed. If both of the two bottom edges are marked as for the 1:2
division type, the parent cell is divided into eight subcells, and then the subcells with marked
sub-edges are divided by an additional level. A similar procedure can also be applied to 1:4
division-type cells.

2.4. Data structure for communication boundary faces

E�cient data transfer between computational subdomains through communication and
boundary conformation is very complex when the mesh adaptation algorithm is parallelized.
To achieve this, edge data structures are usually adopted for node-based schemes [13, 14].
However, for the present cell-based scheme, face-to-face, node-to-node, and cell-to-cell trans-
fer of the �ow variables is required. To satisfy this requirement, a new face data structure
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Figure 2. Local node numbering of child faces after division.

is developed, which enables e�cient data communication and multi-level mesh adaptation
simultaneously without additional post-processing.
This face data structure is constructed in a way that the hierarchy of the parent and

child faces at the communication boundary is retained. The information about the number
of child faces, the attached adjacent processor, and the allocation address is also kept in the
main data structure. The generation and deletion of the boundary faces during mesh adap-
tation are simultaneously updated in the data structure. By using this face data structure,
face-to-face information between processors required by the �ow solver can be e�ciently
extracted.
This algorithm can be implemented more e�ectively by using some geometric patterns of

the communication boundary faces. Since the normal vector on the boundary face is directed
inward to the subdomain, each subdomain boundary face possesses two opposite directions.
The direction normal to the original cell face de�ned for the global mesh during pre-processing
is designated as positive. At the same time, to identify matching edges automatically and to
achieve e�cient edge-to-edge communication, local nodes attached to the two corresponding
boundary faces are re-numbered such that the faces share a common �rst node.
The node numbering for child faces is made in a way that each face contains symmetry with

respect to the �rst node as shown in Figure 2. By doing this, the edges of the corresponding
two child boundary faces between subdomains match automatically when the child faces detect
the common �rst node, as done by their parent face.
Figure 3 shows an example of the data communication between adjacent processors. Ini-

tially, bit �ags are set for the tagged edge on the face of the left processor. Then, the bit
�ags are converted into a decimal value, and this decimal value is transferred to the adjacent
processor. On receiving, the decimal value is transformed to a new number by considering the
node numbering of the face of the receiving processor. In the �gure, the left processor sends
the information about the division type of ‘1’ to the right processor, and then the value is
transformed to ‘4’ and received by the right processor. This decimal value of ‘4’ is converted
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Figure 3. Boundary data communication between adjacent processors.

Figure 4. Tree structure for data storage at the communication boundary.

back to bit �ags, which inform the right processor of the third edge re�nement. This process
is repeated until no further communication can be found between boundary faces.
Figure 4 shows the tree structure developed for the data storage of the child faces at the

communication boundary. In this �gure, four boundary faces are presented before and after the
typical 1:4 or 1:2 divisions. The two identical boundary faces between adjacent subdomains
are shown as the mirror image of each other after the division. The face with a positive
rotational direction stores the child faces in the order of 1-2-3-4, while the opposite face
stores them as 1-2-4-3. In the case of the face with the 1:2 division type, the face with a
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positive rotational direction stores the left child face �rst, while the face with a negative
rotational direction starts from the right child face. This method ensures that the matching
faces of the two adjacent subdomains maintain the same data structure at the communication
boundary, even after the multi-level mesh adaptation. The information about the re�ned child
faces should also be updated in the main data structure so that each child face identi�es
its global-to-local and local-to-global conversion addresses. By using this data structure, the
communication face data can be readily extracted without additional computational overhead
for searching and post-processing.
The information about matching nodes can also be obtained easily by using a similar com-

munication process between adjacent processors. However, common nodes shared by multiple
processors must be considered separately, since that information is not stored in the commu-
nication face data. These nodes can be identi�ed by searching edges shared by more than
three processors at pre-processing. When these edges are re�ned, the information about the
added nodes should be distributed to all processors sharing these edges.
During the parallel adaptation process, the information about the error-marking procedure,

the propagation of subdivision patterns, and the extraction of the data for matching faces and
nodes should be communicated between adjacent processors as necessary.
When hybrid meshes containing pyramidal or prismatic cells are used, an additional num-

bering sequence of nodes and re�ned child faces for quadrilateral faces, consistent to that for
triangular faces, needs to be considered.

2.5. Main data structure

For the present cell-based solver, the main data structure contains the information that links
each tetrahedral cell to its faces, edges, and nodes [6, 10]. The connectivity information that
links each triangular face to its edges, nodes, and the cell is also stored in the data structure,
along with the edge-to-node linkage.
A 2n tree data structure is used to store the information about each cell. Each object divides

into 2n sub-objects under their parent object, where ‘n’ denotes either 1, 2, or 3 depending
on the cell division type of 1:2, 1:4, or 1:8, respectively. New edges generated additionally
during face or cell re�nement should also be included in the tree data structure. Since the
faces divided at the communication boundary always remain in the plane of their own parent
face, the boundary face data can also be handled by using the 2n tree data structure. This
tree data structure is updated simultaneously with the main data structure during re�nement
or coarsening, and thus additional post-processing or re-ordering is not needed after the mesh
adaptation process.
This hierarchical data structure for handling the mesh adaptation and the boundary commu-

nication is stored in local processors. The dynamic mesh adaptation procedure and the main
data structure require approximately 500Mbytes (125Mwords) of memory/1 million cells.
Additional memory of approximately 3% is also used for the boundary face data structure.
For the present implicit time integration scheme, the �ow variables are temporarily stored in
each processor, because the required memory for storing the �ow variables is approximately 3
times more than that of the mesh. As a result, each processor having 256Mbytes of memory
can handle up to 100 000 cells approximately.
After every application of the dynamic mesh adaptation, the host processor collects the local

mesh and solution data. Then the updated global mesh and solution data are repartitioned for
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load balancing by using the MeTiS library [21], and the host processor redistributes the
updated information to each processor. The elapsed time for data transfer and repartition of
this load balancing procedure is negligible compared to the total computational time.

3. RESULTS AND DISCUSSION

3.1. Parallel performance of the �ow solver

A steady �ow around an ONERA M6 wing at a transonic �ght speed was calculated to evalu-
ate the parallel performance of the �ow solver. The initial mesh consisted of 53 460 tetrahedral
cells, 10 911 nodes, and 5541 surface triangles. The free stream Mach number was 0.84, and
the angle of attack was set to 3:06◦. The calculation was made on a PC-cluster composed of
AMD 900MHz processors connected with 100Mbps fast Ethernet network cards. To reach a
steady-state solution, approximately 300 iterations were required using local time stepping.
Iterative schemes, such as the Gauss–Seidel method adopted for the present study, typically

perform sub-iterations to achieve satisfactory convergence of the solution. Under the parallel
environment, it is also important to guarantee the uni�ed convergence property regardless of
the number of processors used, especially for time-accurate unsteady calculations. In Figure 5,
it is shown that this dependency of the solution convergence on the number of processors
can be eliminated by allowing proper data communication between subdomains. However,
performing the full data communication at every sub-iteration requires large computational
overhead for three-dimensional unsteady �ow simulations. Figure 6 shows the e�ect of the
number of sub-iteration communications on the solution convergence. It is observed that at
least three communications are required to achieve a proper convergence of the solution,
which was used for all calculations presented in the present paper.
Next, the shock-capturing capability of the present mesh adaptation procedure was tested.

The total elapsed time for the calculation using 16 processors was approximately 1400CPUs,

Iterations

R
es

id
u

al

100 200 300

10−3

10−5

10−7

10−9

10−11

10−13

2 CPUs
4 CPUs
8 CPUs
12 CPUs
16 CPUs
24 CPUs

Figure 5. E�ect of number of processors on the solution convergence.
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Figure 6. E�ect of number of sub-iteration communications on the solution convergence.

including 40 s for the mesh adaptation. The �nal mesh after two-level mesh enrichment resulted
in 88 290 nodes and 419 184 cells. Re�nement and coarsening of the cells were made after
200 and 400 iterations by examining the magnitude of the density gradient at cell edges.
Figure 7 shows the surface triangulation and the density contours before and after the mesh
adaptation. The partitioned subdomain boundary is represented as bold lines. After the cell
re�nement, the local subdomains were redistributed at the wing leading edge and along the
shock wave as a result of the load balancing between processors. It is also shown that the
�-shaped shock-wave pattern is de�ned better on the re�ned mesh.
The parallel e�ciency of the �ow solver obtained from full and partial communications is

presented in Figure 8 for both initial and re�ned meshes. It shows that the performance of
the coarse initial mesh became severely lower than that of the �ne mesh as the number of
processors increased. This is because the CPU time for communication was relatively larger
than the pure solution time for small mesh size. A signi�cantly improved parallel e�ciency
was obtained by using the �ne mesh. The �gure also shows that much higher e�ciency can
be obtained at less computational time by performing the partial communication than the full
communication during sub-iteration. Owing to the cache RAM e�ciency of the PC-cluster,
the performance higher than the ideal speed-up was also observed when an optimum number
of cells was allocated to processors.

3.2. Unsteady shock-tube simulation

The accuracy of the dynamic mesh adaptation and load balancing procedure was evaluated by
simulating an unsteady shock-tube problem that contains several time-dependent �ow features,
such as the moving shock wave, expansion fan, and contact surface. The propagation of the
communication boundary resulting from the mesh adaptation and the subsequent dynamic load

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 48:671–690



680 Y. M. PARK AND O. J. KWON

Figure 7. Surface triangulation and upper surface density contours for the ONERA M6 wing
at M∞ = 0:84 and � = 3:06◦: (a) Initial mesh; and (b) after two-level adaptation.
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Figure 9. Surface mesh and communication boundary for the shock-tube
problem at three time levels (16 domains).

balancing could also be checked from this test problem. Initially, the velocity was set to zero
on both sides of the tube, and the density and pressure di�erence across the discontinuity was
set to �ve. The mesh had 1732 cells and 554 nodes in the beginning, and its size increased
to 224 841 cells and 42 989 nodes at the end of the calculation with three levels of mesh
adaptation. The time-accurate calculation was made at a non-dimensional time step of 0.001
using 16 processors. The mesh was re�ned at every 40 time steps based on the density
gradient.
In Figure 9, the surface mesh distributions are presented at three subsequent time levels after

the breakdown of the discontinuity. It is shown that the position of the subdomain boundary
represented as bold lines changed in time to cope with the varying local cell density and to
achieve the dynamic load balancing between processors. The present dynamic mesh adaptation
procedure is well demonstrated in the �gure by showing cells added and deleted as necessary
along the moving discontinuities. The precise marking procedure, the propagation of division
types, and the proper data transfer between matching boundary faces under the time-varying
�ow environment are also well demonstrated. The calculated temporal and spatial behaviours
of the density pro�les are in good agreement with the exact solution within the accuracy of
the present numerical method as shown in Figure 10.
Figure 11 shows the variation of the number of cells allocated to each processor as a

function of the computational time. It is observed that each subdomain had highly unbalanced
local meshes when the dynamic load balancing was not applied, which severely degraded the
e�ciency of the parallel computation. On the other hand, when the dynamic load balancing
was applied, the number of cells was distributed equally to each processor and the high
parallel e�ciency was obtained. The computational time without applying the dynamic load
balancing was approximately 3 times more than that with the load balancing.
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Figure 12. Elapsed execution time spent for 40 iterations during the shock-tube simulation.

Figure 12 shows the comparison of the elapsed execution time for performing 40 iterations
between each mesh adaptation. The rapid increase of the total CPU time at the initial stage
of the calculation was mostly for re�ning the mesh along the expansion fan, contact surface,
and shock wave. At the subsequent iterations, the CPU time increased gradually because
the number of cells increased consistently to re�ne the expanding expansion fan region. The
CPU time spent for mesh adaptation was similar to that for repartitioning, and both took
approximately 30–40% of the total calculation time.
The time-averaged parallel e�ciency of the present shock-tube simulation is presented in

Figure 13. The resultant performance based on the total elapsed time was relatively low be-
cause of the overhead time for mesh adaptation, data communication, and mesh repartitioning.
However, the solution time alone showed a good performance. It is expected that the parallel
performance would improve further as the calculation proceeds, since the net solution time
increases faster than that for the mesh adaptation and repartitioning as shown in Figure 12.
The performance can also be enhanced by reducing the number of mesh adaptation at the
expense of the solution accuracy.

3.3. Oscillating NACA0012 wing

The next validation was made for an unsteady �ow around a rectangular NACA0012 wing,
harmonically oscillating at 0:016◦ mean angle of attack and the amplitude of oscillation
of 2:52◦. The free stream Mach number was 0.755, and the reduced frequency of oscil-
lation was 0.0814. The wing aspect ratio was set to 0.5, and a symmetric boundary con-
dition was imposed on both sides of the wing tip so that the results can be compared
with the two-dimensional experimental data [22]. The calculation was made using 16 pro-
cessors.
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Initially, a steady-state solution was obtained at the mean angle of attack on a coarse mesh
having 26 632 cells and 5861 nodes. Then, the unsteady calculation was made using a non-
dimensional time step of 0.015, which was equivalent to proceeding approximately 3400 time
steps to complete one cycle of the motion. Two levels of the dynamic mesh adaptation were
adopted to capture high-gradient �ow regions near the leading edge and along the moving
shock wave. The mesh re�nement and coarsening were applied at every 50 time steps based
on the magnitude of the density gradient.
Figure 14 shows the instantaneous surface meshes at four typical angles of attack during the

cycle. The total number of cells periodically varied approximately from 340 000 to 380 000,
depending on the shock wave formation and its strength. Due to the varying local mesh density
and as a result of the application of the dynamic load balancing, the position of the subdomain
boundary changed continuously in time as observed with the bold lines in the �gure.
The history of the number of cells in each processor is presented for two periods of

oscillation in Figure 15. The maximum number of cells allocated to the processors without
applying the dynamic load balancing was 80 324 after two levels of mesh adaptation. This
number was approximately 50 times more than the minimum number. The subdomain located
near the leading edge maintained the maximum cell number without large deviation in time.
On the other hand, the number of cells in the subdomain located at the mid code showed large
abrupt changes due to the migration of the shock wave. Once the dynamic load balancing was
applied, every processor shared an approximately equal number of cells. The total elapsed time
to complete one period of oscillation was 15 822 s, including 5344 s for mesh adaptation and
repartitioning. The total elapsed time without applying the dynamic load balancing increased to
37 159 s, which was approximately 2.4 times more than that with the dynamic load balancing.
Figure 16 shows the comparison of the elapsed execution time for 50 iterations performed

between mesh adaptations. The execution time for the solution iteration and the mesh reparti-
tioning showed a periodic behaviour due to the varying total number of cells. The CPU time
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Figure 14. Surface meshes at four instantaneous angles of attack
for the oscillating NACA0012 wing (+: pitch-up).
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Figure 15. History of the number of cells of each processor for two cycles of oscillation.

required for the dynamic mesh adaptation was almost unchanged throughout the calculation.
Approximately one-third of the total execution time was used to perform the mesh adaptation
and the repartitioning for the present two-level mesh adaptation.
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Figure 16. Elapsed execution time for 50 iterations for the oscillating NACA0012 wing simulation.

The pressure distributions on the wing surface at four instantaneous angles of attack are
shown in Figure 17. Good comparison was observed between the present results and the
experimental data [22], demonstrating the validity of the present unsteady calculation. The
e�ect of the mesh adaptation for shock capturing is also well con�rmed in the �gure.

3.4. Oscillating F-5 wing

The unsteady �ow around an F-5 wing at a free stream Mach number of 0.95 was calculated
using 24 processors. The wing was oscillating at a reduced frequency of 0.132 with an am-
plitude of 0:532◦. The initial calculation was made on a coarse mesh having 22 434 nodes
and 116 595 tetrahedral cells. The �nal mesh after two levels of mesh adaptation contained
80 673 nodes and 399 935 cells. The total elapsed time to obtain a steady-state solution at
the mean angle of attack was approximately 1030 s, including 26 s of overhead time for mesh
adaptation. The surface mesh distribution and the density contours at the steady state are
shown in Figure 18.
The unsteady calculation triggered from the steady-state solution took approximately 2.1 h

of CPU time=cycle with the two-level dynamic mesh adaptation. The normalized time step
size used for the present unsteady calculation was 0.015, and approximately 1670 time steps
were needed to complete one cycle of the motion. The mesh re�nement and coarsening were
applied at every 50 time steps based on the magnitude of the density gradient. The maximum
number of cells reached up to 600 000 approximately.
The real and imaginary components of the unsteady surface pressure coe�cient were ob-

tained by applying the Fourier series analysis, and the results at four spanwise sections of
the wing are compared with the experiment [23] in Figure 19. It is shown that the imaginary

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 48:671–690



UNSTRUCTURED DYNAMIC MESH ADAPTATION ALGORITHM 687

x/c

C
p

C
p

C
p

C
p

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5

-1

-0.5

0

0.5

1

1.5

Experiment[22]
No adaptation (lower)
No adaptation (upper)
2-level adaptation (lower)
2-level adaptation (upper)

α = 2.01o(-)

x/c
0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

1.5

x/c

α = -0.54o(-)α = -2.41o(-)

α = 0.52o(-)

x/c

Figure 17. Instantaneous pressure distributions on the NACA0012 wing surface.

Figure 18. Surface mesh and density contours for the F-5 wing.
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Figure 19. Imaginary and real components of the pressure coe�cient for the
F-5 wing under a harmonic oscillation.
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component of the pressure was dominant for the present high-frequency motion. The oscil-
latory movement of the shock wave appeared between 80 and 90% of the chord as a sharp
spike. The pressure peaks near the leading edge and at the moving shock wave were well
captured, demonstrating the validity and the accuracy of the present dynamic mesh adaptation
procedure.

4. CONCLUSION

An unstructured dynamic mesh adaptation and load balancing algorithm has been developed
for the e�cient simulation of three-dimensional unsteady inviscid �ows on parallel machines.
The �ow solver was based on the Roe’s �ux-di�erence splitting and the Gauss–Seidel implicit
time integration. A new tree data structure was developed for the e�cient treatment of the
multi-level data transfer between processors caused by the repeated application of the dynamic
mesh adaptation. The parallel performance and the e�ect of the mesh adaptation were tested for
a steady transonic �ow around an ONERA M6 wing. The unsteady dynamic mesh adaptation
and the load balancing procedure was validated by calculating a shock-tube problem and
the �ows around oscillating NACA0012 wing and F-5 wing. It was shown that the present
method is e�cient and accurate for solving three-dimensional unsteady �ows under parallel
environment.
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